
Leveraging NVMs for Neural Interface Coverage
Muhammed Ugur

Yale University
Raghavendra Pradyumna Pothukuchi

Yale University
Abhishek Bhattacharjee

Yale University

Abstract
The data being read from invasive neural interfaces is increas-
ing exponentially, stressing the safety and power constraints
on these devices. There is a need to efficiently process and
store this data on-device, especially as implants shift towards
wireless deployments. Non-volatile memories (NVM) are an
attractive option due to their persistence and energy effi-
ciency. We argue that better NVM integration is needed
going forward and that it will enable more flexible forms of
deployment. However, doing this at low power with low la-
tency and high capacity is critical. These are at odds with one
another so new architectures and approaches are needed.

1 Introduction
Neural interfaces are an emerging treatment modality to
help remove the burden of neurological and psychiatric dis-
orders on patients with no remaining clinical options. They
record neural activity and provide treatment through elec-
trical stimulation. The most effective devices are invasive,
recording higher fidelity signals and enabling better treat-
ment with the requirement that they consume low power
for safety. However, the amount of data being recorded is
increasing exponentially, with the eventual goal of reading
Tbps to record the billions of neurons in the brain.

Figure 1 shows an estimate for the data volume using his-
torical and extrapolated data on simultaneously recorded
neurons [8]. The data is fit using a double exponential model
and attributes a sampling rate of 30000 Hz and 16-bit resolu-
tion to each neuron. Power consumption is estimated on the
right axis for wirelessly transmitting data rates using a 200
pJ per bit radio. Given the strict milliwatt power constraints
outlined by the FDA, transmitting all of this data wirelessly
is unsafe. This motivates the need for on-device compute
to either compress the data or perform treatment without
having to go over the network.

On-device compute is realized in the form of accelerators
for known neural interface kernels. These kernels are typi-
cally some variation of signal processing or machine learning
algorithms. However, as data rates grow, power consump-
tion increases within these accelerators. This is because they
require more local memory, or SRAM, to process the indepen-
dent streams of data, also known as channels. More efficient
memory technologies are an option to alleviate this pressure.
A natural option is to integrate non-volatile memories

or NVMs. They provide better density-per-watt compared
to SRAM and scale better for exponentially-increasing data
rates. Persistency is also a valuable feature. Existing devices
already leverage non-volatility to store histories of recording

Figure 1. Exponential growth of data rates for
electrophysiology-based neural recording with esti-
mated power consumption of wireless transmission.

or pre-defined templates for better treatment and diagnostics
[1, 7]. As neural interfaces become more mobile and wireless,
persistency will become necessary to stay within safe power
constraints and deal with network disconnectivity. However,
integrating NVM technologies is in its infancy and requires
careful consideration to best use their features.
We have previously argued that re-thinking on-device

compute to be swapping-centric by leveraging on-device
storage in the form of NVMs will improve neural interface
coverage [9]. However, doing this naively is inefficient and
does not properly utilize the NVM to its highest potential.
In this work, we expand our analysis and characterize how
channel and sampling rate coverage varies depending on
resource trade-offs. We also highlight important considera-
tions when integrating NVMs such as their rich design space,
reliability issues, and complexity.

2 Background
Both on-device compute and storage are becoming com-
mon for neural interfaces given the aforementioned ten-
sion between growing data rates and power constraints. Our
previous work has looked into both integrating on-device
compute and storage in a safe and effective manner [5, 7]. On-
device storage is useful for storing longer histories of data,
performing partial computations, and accessing pre-defined
templates [7]. The NeuroPace RNS is a FDA-approved device
used to treat refractory epilepsy which has around 1 MB of
storage to store histories of neural activity [1]. Although this
is useful, it is only a start and is far short from the Gbps that
will eventually be read from the brain.

1



(a) Initial configuration support from [7]. (b) Additional SRAM. (c) Naive swapping for BBF.

(d) Additional NVM bandwidth. (e) Lower NVM read/write latency. (f) Ideal configuration support.

Figure 2. Shows the feasibility of different channel/sampling-rate configurations using a naive swapping approach for a signal
processing accelerator (BBF). The different subfigures highlight how on-chip resources impact the coverage of the approach.

Given the infancy of on-device storage for invasive neural
interfaces, there are still many open questions as to how they
can be best integrated. In this work, we show that storage
can be leveraged for more flexible deployments of neural
interfaces. By flexible deployment we mean an interface
that can support many different channel and sampling rate
configurations from the recording probes, including channel
counts much higher than those currently available today.

3 NVM Integration
By designing accelerators to be swapping-centric, i.e., intel-
ligently moving data to and from the NVM, they can expand
their coverage to more channel count and sampling rate
configurations. Figure 2c shows the support of these config-
urations for the Butterworth Bandpass Filter (BBF) using a
naive swapping approach. This approach is optimistic but it
highlights how the latency and bandwidth of the NVM re-
strict coverage and how there is more room for improvement
to maximize the potential of NVM integration.

3.1 NVMModeling
This naive approach is modeled using characteristics from a
Micron SLC NAND Flash chip [6]. This NVM is page-based
and includes a chip, die, plane, block, and page hierarchy.

Parallelism, in the form of parallel reads and writes, is al-
lowed across chips, dies, and planes. For I/O, we include the
cost of page movement across a shared bus and the latency of
reads/writes based on the NVM. Read and write bandwidth
is determined by bus characteristics and read/write latency.

3.2 Naive Swapping
For naive swapping, we first start out with an accelerator that
supports only 96 channels at 30000 Hz (Figure 2a), which is
based off of the system from [7]. One method for improving
coverage is to add more SRAM (Figure 2b). However, this
eventually hits a cap due to power consumption and is not
preferable as we scale in the number of channels.
Instead, we design a naive approach which reads and

writes the state of the filter for each channel. The idea is
to first read the state of the filter from the NVM for every
new sample, then compute the output of the filter. Then,
update the state of the filter and write that state to the NVM.
These I/Os are needed because there is not enough SRAM
for the state of all the channels. This approach additionally
considers buffering the data before a write and performing
parallel writes. It also uses extra SRAM from the storage con-
troller, giving immediate coverage for lower channel counts.
What this technique enables is the expansion towards higher
channel count systems at potentially lower sampling rates.

2



Figure 3. Showcases two swapping approaches for the Fast Fourier Transform (FFT) as channel counts increase. Swapping
approaches can be read or write-centric, and depending on the relationship between read/write power for a given NVM, the
power consumption can vary substantially. Here the NVM’s instantenous read power is much higher than the write power.

This is still practical since patients require personalized care
for their diagnoses and treatments. Lower sampling rates
may be tolerable or preferred if more channels are allowed
and vice versa.

3.3 System Trade-offs
Figure 2d shows how increasing the bandwidth three-fold
impacts the coverage of the naive swapping approach. NVM
bandwidth saturates quickly since the naive swapping gener-
ates a read and write for each channel within a short window
of time. Bandwidth allows us to cover more channel counts
and also sampling rates and pushes coverage towards the
diagonal line, which represents the data rate the system was
originally designed for. If less I/Os are performed, e.g., by
batching the state of the filter across many channels, then
coverage would expand further.
Figure 2e shows how a lower read and write latency to

the NVM increases coverage based on the previous increase
in bandwidth. Here we are able cover more under the band-
width constraint, specifically lower channel counts with
higher sampling rates. This is because lower channel counts
are processed quickly, so a read and write must finish sooner
to process the next sample. When the latency of the NVM is
halved, then more of these configurations can be supported.
Finally, Figure 2f shows the ideal case where we are able

to support all channel and sampling-rate configurations for
the fixed data rate. This fixed data rate scenario represents
the case where on-device compute is clocked at the same
frequency even as channel counts increase. Ideally, this di-
agonal is pushed further to the right, which can be done
by improving the efficiency of on-device compute. This will

allow the accelerators to be clocked much higher, and there-
fore, process higher data rates.

3.4 Read/Write Power
Figure 3 showcases two different swapping approaches, called
FIFO and Max Channel, for the Fast Fourier Transform (FFT).
FIFO is an approach which receives samples from each chan-
nel in its natural order, and when SRAM is full, it simply
writes this first-in first-out layout to the NVM on a page-
by-page basis. Once all data is received, the approach will
then read the necessary pages and samples to compute each
channel’s FFT. This approach incurs low writes but a large
number of reads.
Max Channel is a different swapping method which em-

phasizes more writes for less reads. The key idea here is to
evict the channel with the most samples in SRAM to its own
page once SRAM is at capacity. This provides spatial locality
and reduces the amount of reads later on when computing
the FFT of each channel. The first two graphs in Figure 3
showcase the trade-off in reads and writes between both
FIFO and Max Channel.

The graph furthest on the right estimates the power con-
sumption in milliwatts of these approaches for a selected
NVM. The energy estimates for this NVM were collected us-
ing NVSim [4]. The key observation here is that with NVSim,
the instantenous power of a read page is much higher than
writing a page. This means that for a swapping approach
that is more read-centric, like FIFO, the overall power con-
sumption will be higher.
For FIFO, the increasing trend in power consumption as

channels increase is because of the increasing ratio between
3



reads and writes. FIFO does not scale well with higher chan-
nel counts because spatial locality suffers under this ap-
proach.MaxChannel on the other hand has a stable read/write
ratio as channels increase. The overall power consumption
of Max Channel is therefore less because the power of a write
for this selected NVM is much lower than a read. The down-
side with Max Channel is that writes have high latency and
implementing this approach in real-time may not be feasible.
The insight with this example is that device characteristics,
namely read and write power, will impact the best swapping
approach. Improving swapping approaches, like the naive
approach in Figure 2c, will need to be device-aware going
forward.

3.5 End-to-End Applications
The approaches presented so far are for a single accelerator.
However, there are typically many accelerators working to-
gether to realize an end-to-end pipeline or application [5, 7].
Applying these swapping techniques across many acceler-
ators at once will be challenging but necessary to realize
full NVM integration. To do so will require understanding
how the raw signal data changes throughout an end-to-end
pipeline. If data is filtered, for example, then swapping may
not be necessary or be relatively cheap to implement. Many
of the accelerators which generate features, such as BBF or
FFT, create the most pressure on the NVM due to their prox-
imity to the raw signal data. Identifying overlap between
data will be critical to minimize I/Os to the NVM.

3.6 Reliability
Integrating NVMs not only requires carefully understanding
system resources and power, but also device reliability of the
underlying memory technology. Endurance, for example, is
a critical issue that needs to be addressed before integrating
an NVM [3]. NVMs may be susceptible to wear-out, where
each block of data has a limited amount of writes before
being unreliable. Within the context of neural interfaces,
improperly handling wear-out or increasing the amount of
writes will chip away at the lifetime of the implant, possibly
leading to risky and costly replacement surgery.
There are other reliability considerations as well. This

includes handling read and write disturbances, using error-
correcting codes, handling garbage collection, and more [3].
Depending on the requirements set forth by the clinicians,
these need to be addressed to avoid data loss and maintain ac-
curacy. However, supporting reliability comes with overhead
which will take away resources that would have otherwise
been allocated to better performance or higher data rates.

3.7 Technology
The analysis so far has focused on NAND Flash due to its
accessibility and practicality. Other memory technologies
could also be characterized and integrated such as Resistive
RAM (RRAM), Ferroelectric RAM (FRAM), Magnetoresistive

RAM (MRAM), Phase-Change Memory (PCM), and Spin-
Transfer Torque RAM (STT-RAM) [2, 4]. These technologies
would impact the energy/power consumption, latency, ca-
pacity, and addressability of the swapping approaches. A
systematic study of the trade-offs is necessary to maximize
neural interface coverage.

4 Conclusion
There are many factors that go into integrating NVMs for
neural interfaces. This includes the choice of technology, its
performance characteristics, handling reliability and wear-
out, and the relationship with on-device compute. This work
presented these trade-offs and introduced a naive approach
for leveraging NVMs for better channel and sampling-rate
coverage. However, more can be done to expand coverage
due to the algorithms for on-device compute being known
and predictable. Operating in this regime of specialization
allows us to invoke theory to maximize our system coverage.
Given the clinical objectives of neural interfaces, pursuing
this will be imperative for architects to ensure the best pos-
sible treatment and quality-of-life to patients.

References
[1] [n. d.]. RNS System PhysicianManual. https://www.neuropace.com/wp-

content/uploads/2021/02/neuropace-rns-system-manual-320.pdf. Ac-
cessed: 2023-11-03.

[2] Satyajaswanth Badri, Mukesh Saini, and Neeraj Goel. 2023. An Efficient
NVM-Based Architecture for Intermittent Computing Under Energy
Constraints. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 31, 6 (June 2023), 725–737. https://doi.org/10.1109/tvlsi.2023.
3266555

[3] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu.
2017. Errors in Flash-Memory-Based Solid-State Drives: Analysis, Miti-
gation, and Recovery. https://doi.org/10.48550/ARXIV.1711.11427

[4] Xiangyu Dong, Cong Xu, Yuan Xie, and N. P. Jouppi. 2012. NVSim:
A Circuit-Level Performance, Energy, and Area Model for Emerging
Nonvolatile Memory. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 31, 7 (July 2012), 994–1007. https:
//doi.org/10.1109/tcad.2012.2185930

[5] Ioannis Karageorgos, Karthik Sriram, Ján Veselỳ, Michael Wu, Marc
Powell, David Borton, Rajit Manohar, and Abhishek Bhattacharjee.
2020. Hardware-software co-design for brain-computer interfaces. In
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 391–404.

[6] Inc. Micron Technology. [n. d.]. MT29F128G08AKCABH2-10.
https://www.micron.com/products/nand-flash/slc-nand/part-
catalog/mt29f128g08akcabh2-10. Retrieved December 22, 2023.

[7] Karthik Sriram, Raghavendra Pradyumna Pothukuchi, Michał Gerasim-
iuk, Muhammed Ugur, Oliver Ye, Rajit Manohar, Anurag Khandelwal,
and Abhishek Bhattacharjee. 2023. SCALO: An Accelerator-Rich Dis-
tributed System for Scalable Brain-Computer Interfacing. In Proceedings
of the 50th Annual International Symposium on Computer Architecture
(ISCA ’23). ACM. https://doi.org/10.1145/3579371.3589107

[8] Ian H Stevenson and Konrad P Kording. 2011. How advances in neural
recording affect data analysis. Nature Neuroscience 14, 2 (Jan. 2011),
139–142. https://doi.org/10.1038/nn.2731

[9] Muhammed Ugur, Raghavendra Pradyumna Pothukuchi, and Abhishek
Bhattacharjee. 2024. Swapping-Centric Neural Recording Systems. In
The 15th Annual Non-Volatile Memories Workshop.

4

https://www.neuropace.com/wp-content/uploads/2021/02/neuropace-rns-system-manual-320.pdf
https://www.neuropace.com/wp-content/uploads/2021/02/neuropace-rns-system-manual-320.pdf
https://doi.org/10.1109/tvlsi.2023.3266555
https://doi.org/10.1109/tvlsi.2023.3266555
https://doi.org/10.48550/ARXIV.1711.11427
https://doi.org/10.1109/tcad.2012.2185930
https://doi.org/10.1109/tcad.2012.2185930
https://www.micron.com/products/nand-flash/slc-nand/part-catalog/mt29f128g08akcabh2-10
https://www.micron.com/products/nand-flash/slc-nand/part-catalog/mt29f128g08akcabh2-10
https://doi.org/10.1145/3579371.3589107
https://doi.org/10.1038/nn.2731

	Abstract
	1 Introduction
	2 Background
	3 NVM Integration
	3.1 NVM Modeling
	3.2 Naive Swapping
	3.3 System Trade-offs
	3.4 Read/Write Power
	3.5 End-to-End Applications
	3.6 Reliability
	3.7 Technology

	4 Conclusion
	References

